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Graphs have been increasingly utilized in the characterization of complex networks from diverse origins,
including different kinds of semantic networks. Human memories are associative and are known to support
complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can
sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging
techniques, assigns renewed value to classical distributed associative memory models. Here we show that these
neural network models, also known as correlation matrix memories, naturally support a graph representation of
the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the
memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code
invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical
method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to
comprehend how individual brains that map the external reality, almost surely with different particular vector
representations, are nevertheless able to communicate and share a common knowledge of the world. We finish
presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which
provides a solution to the known problem of branching in semantic nets.
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Graph-theoretic analysis has been increasingly used in theroducts to allow different associations to the same cue con-
study of large and complex networkd], as they emerge cept, solving by this way the problem of branching in seman-
from social, technological, and biological domains. Once &ic nets.
graph structure has been defined, various measures can be
applied to investigate, for example, average distance among
nodes, degree distribution of nodes, and clustering. These

techniques are general and widely applied in phy$is In the field of cognitive neuroscience, the techniques of
Recently, growing attention has been paid to diverse comfunctional brain imaging6] have contributed with important
plex semantic networks, such as the Thesaurus, WordNe4dvances to the efforts to map cognitive processes on the
and free-associations databaf#s Certainly, the description human brain. The data of neuroimaging have shown that
of the structure of mental associations stored in humamvery cognitive activity is supported by patterns of activity
memories as concept or semantic graphs has a long traditiasf extended and distributed groups of neurons. This finding,
[4]. However, a theoretic frame that could explain how neu+n addition to the knowledge that the memory traces are
ral systems are able to hold graph structures as conceptuglored superimposed and that memories are tolerant to dif-
networks is lacking. The comprehension of the relations befuse damagg7], naturally point to the kind of models of
tween neurobiology and cognition is the main goal of neurakognitive activities named “distributed associative memo-
network theories. But the use of graphs in neural networkies.” These models fit perfectly well with this vision emerg-
theory has been classically confined to the study of conneGng from the current functional neuroimaging.

tivity among neurons or groups of neuroffs]. Here, we The models of distributed associative memories, also
want to show that a particular kind of neural network mOdel,known as “correlation matrix memorieg§8], account in a
distributed associative memoriésiso known as correlation natural way for some of the distinctive features of human
matrix model$, have a structural bond with the adjacency memory (for a systematic approach to this theory we refer
matrix of the graph of associations that could be relevant. IRhe reader to the classical book of Kohong@); a recent
fact, the connection that we describe here allows a technicghysicist's view on these models can be seefilij).
approximation to an ancient epistemological problem: How |n distributed associative memory models, the units car-
can individual brains, which map the external reality with rying cognitive meaning are large patterns of neural activi-
different particular vector representations, communicate angles, represented by vectors. The memory traces are stored,
share a common knowledge of the world? Moreover, wedistributed and superimposed. The basic operation of these
show that the mapping between matrix models of distributegnodels is the association, that is, the capacity of neuronal
memory and associative graphs is extensible to contexigroups to respond to a certain configuration of neural activity
dependent associative memories that make use of tens@jiith an associated pattern of neuronal activation. We might
then havek such associations summarized by the mapping
{f1—0:,f,—0,, ... fk— 04}, wheref andg are real column
*Corresponding author. Email address: pomi@fcien.edu.uy vectors representing the patterns of neuronal activities acting

I. DISTRIBUTED ASSOCIATIVE MEMORY MODELS
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as stimulus and associated responses, respectively. In theletice thatG,, admits repetition within its columns inas-
models the patterns are distinguished by their angl@®  much a same concept can be retrieved as a result of different
colinear vectors represent the same pajtedo, if a set of stimulus concepts.

stimulus vectordf;} are to be mutually distinguishable they

must be |inear|y independent. 11l. GRAPH OF ASSOCIATIONS
Including the set ofk different, linearly independent, . _ .
stimulus vectors{f} in the k columns of the matrixF GraphsI'(V,E) are mathematical objects defined by an

=[f,,f,, ... fi], and the correspondirigassociated response ordered pair of sete/,E). The seW is the set olverticesand
vectors in the columns of the matr&=[g;,d,, ... g, then,  E, a subset of the set of uno_rdered pairs\ofis the set of
an associative memory able to stdrarbitrary associations €dges[13]. If the pairs of vertices are ordered, the edges of

without distortion is given by the general expressjéh the graph are named arcs, represented by arrows, and the
- graph is named as a directed graph or a digraph. Every graph
M =G(F'F)"F', (1) can be univocally determined by its adjacency ma#if’)

where (FTF)"IFT is the Moore-Penrose pseudoinverse, usu=L2]- The adjacency matrix of a graph is a square matrix
ally written asF*. Without loss of generality we can so far (the same dimension of the vertex spage whose entries

assume that the mapped input sigrfals.f, are orthonormal take values 1 or 0, depending on the existence of an arc

to one anothef11]. In this case the expression of the matrix INKiNg the pair of vertices;. o
memory reduces to the simple form Given a finite number of concepts, an associative memory

is characterized by its capacity of responding to each concept
M =GFT, (2) with the evocation of another concept. An association is,
therefore, an ordered relation between pairs of concepts.

or, equivalently, EgifiT. Such memory, associative and I . iglBPK E) i
content-addressable, stores the associations distributed a-rl;gen’ the set of associations configures a dig E) in

superimposed in the coefficients of the matvix These co- a vertex spac¥ of possible concepts, being their aieshe

efficients can be related, in the first instance, to synaptié\"(at of associations .betlvveen corlcepts mstructgd n tPe
memory. We name this digraph as “graph of associations.

conductance modifications of the neurons represented by the ! o2
rows of the matrix. In this graph of associations only one arrow outgoes from
each vertex, so each vertex of the digraph baslegreel,
which is the definition of dunctional digraph[14]. As the
Il. MEMORY MODEL EOR THE ASSOCIATIONS vertices are in correspondence with concepts represented by
BETWEEN CONCEPTS real vectors of length, such that any two vectors are or-
thogonal, the vertex spacé is an orthonormal basis of a
Now consider the utilization of an associative memory tovector space of dimension equal to the number of vertices
model the store of associations between concepts from th&)|. Let us call this acompleteorthonormal representation
real world, such as those represented in semantic nets as frge5)] of the graph of associations.
associations databas¢8]. The nervous system stores the Hence, distributed memories admit two complementary
concepts in a distributed form, as a certain pattern of neurepresentationga) its matrix resulting from the sum of out-
ronal activation[12]. erproducts of Eq(3), strongly dependent on the particular
We represenih distinct concepts by vectors chosen within code of concepts, an@) its graph of associations. Figure 1
an arbitrary orthonormal basfsv} that span®R", n=h. The  shows the distributed memory, the corresponding graph of
dimensionn corresponds to that of the biological domain andassociations and the adjacency matrix for an example of as-
takes into account all the possible activations for any giversociations between only four different concepts.
concept. Our memory stores the associations elicited by each
concept acting as a stimylus and giving as a result anpther IV. ADJACENCY MATRIX AS A MEMORY
concept. So, both stimulus vectors and associated
responses—generically{f;} and {g;}—map concepts, and Now we return to the matrix memory,(nxn) is di-
they belong to the samedimensional vector space. mensional redundant inasmuch as the different concepts
A memory M, that associates to each cue concept were codified withn-dimensional vectors imposed by the
another arbitrary concept;, is written as a sum di outer-  biological information processing. Thus, for the analysis of
productswi’wiT the memory we only need to consider the abstract concept
vector space. In this case it is always possible to do an or-

M, = zh: Wi,WiT: 3) thogonal . change of ba§is _by mapping the biologicgl
- n-dimensional representation into an abstract representation
in the h-dimensional space of concepts.
where w =w; for 1<j<h, or in the compact formM,, We transform the vectors of the ba$ig} to the standard

=G,F,, whereF,, is a rectangular matrixnxh) and its  basis of the concept space constituted by the column unit
columns are theh mutually orthogonal conceptsF,  vectors of the h-dimensional identity matrix: e
=[w;,Ws, ... ,wg]). The set ofh associated concepts corre- =(1,0,...,07, e,=(0,1,...,07,..., =(0,0,...,2". Re-
sponding to each of the stimulus concepts are chosen withiwriting the matrix memory in the standard basis gives the
the same sefw} and are packed in the matri@,(nxh). following sum of outerproducts:
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V. SPECTRUM OF THE MEMORY

1 0o 0 0
M, = | 05 *01~5 Obs 0-05 When characterizing the dynamic properties of a neural
0 -

system with recursion, the final behavior will depend on the
spectrum of the matrix memory. Therefore, its determination
1 becomes a desired goal in a real biological associative
memory. This goal is, nevertheless, hard to attain, because
we do not know the details of the neural codes. However, as
long as the distributed associative memory model remains
4 2 valid, the representation of a neural memory by the graph
with the structure of stored associations provides with a
simple method to obtain that spectrum.

Let us now consider the relation between the spectrum of
the n-dimensional matrix model of the biological memory
M,, and the spectrum of thk-dimensional memory of the
_ o abstract concept spadé.. SinceM =A(")" and it is well

FIG. 1. A memory storing the associatiof$—3,2—1,3  known that a matrix and its transpose have the same eigen-
—4,4— ;} between four co_ncepts coded by vectors of an Orthonor'\/alues[16], what we wish to relate is the spectrum of the
mal basis {Wi' _The matrix memory M, =GF"=[Wsw:WaW1]  matrix model of the biological associative memory with that
X[wiwawaw,]_is generated by the sum of outerprodudls, ot 1o adjacency matrix of the graph of associations. To re-
SWaWy FWiW, FWaWa tWiW, . Representingwy...ws by the oo 0 e point, observe that the change of basis from the
corresponding columns of a normalizetk4 Hadamard matrix, the neural n-dimensional concept vectorsv} to the abstract

matrix memory looks as in the figure. This memory can also b di . | standard bagis be Vi d .
represented by its graph of associations. The four concepts are rep- Imensional standard ba can be viewed as occurring

resented by the set of vertices ¥, v,, v3, 74} and the associa- in th Ste_ps:{w}n_’{e}nﬂ{e}h'
tions by the arcs E&svg, vovy, vavs, vavy}. A(T) is the adjacency This d|agrar_n represents these two_steps_: an orthogonal
matrix of this graph. change of basis fromw} to {e}, both n-dimensional, and a

dimensional reduction from the biological to the conceptual
h space. In the first step we hal#,, and a memory coded in
M= el 4 the basis{e}, but now also withn-dimensional unit vectors
=2 €€, (4) . _sh o T _
i=1 M- SO, sinceM ,,==;2,w/w; andw;=F,g, (whereF,, the
) ) _ square matrix containing the column vectors of thgw}
where €/ =¢; for 1=<j<h. For the particular four-concept grthogonal basis, is here acting as the matrix of change of
example of Fig. 1, we have basig, then the memory can be written as

0.5 0.5 -0.5 -0.5

A=

—_—_ = O
coo o
O Oo e
(= ==

_ T T T T
M= e8] + e.€) + €465 + €8], (5 h h

which is another vector codification of the same set of asso- ~ Mw= E Fue (Fue)' = 2 Fue{e'Fi=FuMemFy. (7)
ciations represented by the graph of the figure. =1 =1

Finally, observe that each term of the sum, i.e., each as-. . . .
sociation, is a unit square matrix with 1 in the enjinand 0 SinceF,, is orthogonal, matrl.ces/lw and My are similar
in the rest of the elements. Hence, each term of the surind share the spectrum of eigenvalues. Therefore,
provides an element of the transpose of the adjacency matrix
of the graph of association INM W} ={NMgnl}. (8)

— T
Me=A(D)". (6) In the second step we will evaluate the relation between the

This means that the adjacency matrix of the graph of assoPectrum of the matrlememorleM em and Mefh)' First re- _
ciations is just the memory coded in the standard biagief ~ Mmember thaMen =A(I')" and also that the adjacency matrix
the h-dimensional space of concepts. Note that the transpos®f @ graph and its transpose have the same eigenvalues.
is the result of adopting in these models the usual conventiohherefore{A\[M ¢ I} ={A\[A(I') ;. Adopting the complete or-
of coding the neural activities with column vectors. Codingthonormal representation of the graph, batT’)" andM
the concepts with row vectors instead of columns, the adjaare orthonormal labelings of the vertices of the same graph
cency matrix of the graph of associations directly gives thethe only difference being the dimension of the unit vectors of
very memory coded in the standard basis. the standard basis employed.

Remark that(i) if a complete orthonormal representation  Labeling the h vertices with h columns of an
of a graph is adopted, the adjacency matrix of the graph can-dimensional identity matrix generatés-h) unconnected
be viewed as a sum of outerproducts of the unit vectors lavertices in the graph, that are in correspondende-to) zero
beling the verticesA(I)=2L,e€/", with & =¢;, 1<j<h;  rows and columns in the adjacency matrix. Choosing the first
and(ii) if the graph is a functional digraph, thé(I') can be  h columns of this identity matrix as labels, the adjacency
viewed as a matrix memory. matrix of the graptfhere equal o] attains the form
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A) O Adaptive associative graph
Mem = , 9
™7 0 o0 © 1

where the zeroes represent null matrices. It is evident tha
Mn will have (n-h) additional zero eigenvalues. Any other o 1 1 0
labeling of the verticegobtained by choosindy different 4 Ox °2 A= i 3 8 }
n-dimensional unit vectors of the standard bpsesults in 1 0 1 o0
the permutation of rows and columns of the max,, an
operation that preserves the spectrum and gives rise to isc 3
morphic graphg17]. B i i .

Consequently, the eigenvalues of any given matrix E‘G@F ®Pa +GpF opp
memory will be the same as those of the adjacency matrix of B
its graph of associations plis-h) zero eigenvalues. géﬁ% P

Pa % ! Iy

VI. ADAPTIVE ASSOCIATIONS AND THEIR GRAPHS %?"

In this section we present adaptive associative graphs a
an extension of the model that we have already seen. Thes
graphs correspond to memories that can associate differer|| 7« 0100
responses to the same given concept, depending on the ne Ap= | 0001
ral context. In doing so, these graphs and their coresponding 1000
memories provide a solution to the known problem of 0010

branchingin semantic nets; this is the practical problem of

) . . : 0010

what to do if there is more than one link leaving a node. 1000
The directed graphs that arise from experiments of free| AZD= 1 0001
1000

associations in humar8] can present more than one arrow
emerging from each concept. These associative digraph

with outgoing degrees larger than one are population graphs, gy 2. Human memories can retrieve different associations de-
resulting from the study of a sample of people. Each persogenging on the context. The semantic structure of such a memory
responds to the cue concepts with a single association, so thgn pe represented by a corresponding graph of adaptive associa-
graph of explored associations of an individual is a func+jons. At the upper part, the figure shows a multigraph that is a
tional digraph similar to those we have just seen emerginguperpositiorithe graph uniopof two functional digraphs, the sub-
from the classical associative memory modélg]. graphsl’, andI's, and its adjacency matrix. The Greek letterand
However, it is well known that a same human mind cang represent two different edge colorings, corresponding to associa-
retrieve diverse associations, depending on the context adens in the presence of different contextee text The context-
companying each cue. A human memory in a real nervousependent memorf stores both sets of associatiofs.G,, and
system can probably be regarded as a superposition of the€g are defined in the text. A given context vecfiy or p alterna-
kinds of memories and their associative graphs. Contextively extracts the memoriedl ,=G,F', or M ;=GzF'. Their cor-
dependent associative models were proposed in 1989 to peéesponding associative graphig andI's are shown with their ad-
mit adaptive associationgl9], providing a solution to the Jacency matrices.
problem of branching. In these models making use of the
tensor product, a particular associative memory can be exnstead of the previou& ,=[wsw,;w,w;]. To each one of
tracted from a state of superposition in the same neural subhese sets of associations corresponds an associative graph
strate, by the action of the conte20]. In these memories, a with one colorT", andT . The adaptive associative graph
context is a vectop representing another pattern of neuralis their superposition, and it is formally defined as their

activity that modulates a vector stimulus. union'=I',UT 5. A memory instructed as
The semantic structure of this kind of memory can be . T
represented by its corresponding graph of adaptive associa- E=G.,FT®p, +GgF @pg, (10)

tions. This graph is a superposition of the previously de- . :
scribed associative graphs. The associations corresponding“t\@ere ® is the Kronecker produc(also_named d'fe“ or

a particular context are distinguished in this superpose{iensor produgt stores both sets of aSSOC|at|on§.Ag|ven con-
graph by different edge coloringpere we use Greek lettess extp, or py alternatively extracts the memorids, or M
and B for the contextual coloringsLet us suppose that the El®p,)=G,FT=M, (11)
associations instructed in the example of Fig. 1 correspond to

a certain contexwr of neural activity represented by a col- where, as we have seeM, is in correspondence with
umn vectorp,. Now consider another neuronal contgxt A(I',). Hence, looking at the graphs, the operation per-
represented by the vectpy, orthogonal top,. The same set formed by the context is to dissect the subgraph with its
of concept cue§ =[w,w,w,w,], but now in the presence of same coloring.

contextpg, elicit the associated concep®,;=[w,W,w,ws] Figure 2 shows the adaptive associative graph described
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in the previous paragraph and its adjacency matrix. Thigiations and its spectrum remain code invariant. This code
graph is decomposable in the two associative subgréphs invariance is not only referred to the election of the basis and
or I', depending on which contexg,, or pg, is presented to its dimension, but also to the election of the labeling of each
the context-dependent associative memory concept within the vectors of a given basis. We believe that
this finding of code invariance of the graph and the spectral
characterization of associative memories can provide with a
pathway for the comprehension of the phenomenon of shared

We have shown here that distributed associative memory/orlds.
models, also known as correlation matrix memories, admit a Finally, this code invariance suggests the following. A
natural representation as graphs of association. We definét@ural memory is a dynamical system whose final state will
this associative graph and showed that the adjacency matrfieépend on the spectrum of the matrix memory. To know the
of this graph is just the memory coded in the standard basigigenvalues would usually imply the precise knowledge of
of the abstract conceptual space. Therefore, if the neurdhe neural population coding for each concept, the neuronal
memory organization can be at some scale represented wiiPnnectivity, etc. All of these are extremely difficult tasks
this kind of model, our results fulfill the gap between two and practically unattainable at the neurobiological level.
levels of networks: the neuronal wiring and the semantid\Nevertheless, the code invariance of the representation of the
nets. In addition, we want to point out that this result of meémory by its associative graph and its spectrum provides us
semantic nets emerging from matrix associative memorie¥ith a quick method to predict the dynamics of the neural
unifies two representations considered until now as alternasystem, i.e., the sequence of associations, without the neces-
tives [21]: one of graphs of knowledge and another of con-Sity of knowing the detailed biological implementatif#?].
cepts as multidimensional vector spaces. Actually, the knowledge of the relationships of the informa-

The second finding we want to note is that we have oblion stored in the memory enables us to straightforwardly
tained a code invariant. This result may be important, notvrite the adjacency matrix of the associative graph, find its
only because it provides us with a possible neural support fopPectrum, and predict the dynamics of the neural system.
semantic graphs, but also because it could enlighten the veljence, in the case that distributed associative memories re-
hard question of the “shared world phenomenon.” In whafmain acceptable models of human memories, an exciting
sense do we inhabit a common world? How can perceptugRnd also disturbingpossibility of a cognitive engineering
experiences be shared by different individuals provided thagmerges. With this cognitive engineering it would suffice to
almost surely, the distributed codes employed by two differ-explorein vivo the semantic structure of a brain in order to,
ent brains would be different in a detailed level? The codeddding a vertex and some adjacencies or deleting certain key
vectors effectively used in the neural representation of £dges, alter the dynamics of the cognition in a desired way.
same portion of the world by |nd|V|duaI§.sh§1r|ng the same ACKNOWLEDGMENTS
maternal language are the result of modifications of synaptic
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