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Graphs have been increasingly utilized in the characterization of complex networks from diverse origins,
including different kinds of semantic networks. Human memories are associative and are known to support
complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can
sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging
techniques, assigns renewed value to classical distributed associative memory models. Here we show that these
neural network models, also known as correlation matrix memories, naturally support a graph representation of
the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the
memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code
invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical
method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to
comprehend how individual brains that map the external reality, almost surely with different particular vector
representations, are nevertheless able to communicate and share a common knowledge of the world. We finish
presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which
provides a solution to the known problem of branching in semantic nets.
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Graph-theoretic analysis has been increasingly used in the
study of large and complex networks[1], as they emerge
from social, technological, and biological domains. Once a
graph structure has been defined, various measures can be
applied to investigate, for example, average distance among
nodes, degree distribution of nodes, and clustering. These
techniques are general and widely applied in physics[2].
Recently, growing attention has been paid to diverse com-
plex semantic networks, such as the Thesaurus, WordNet,
and free-associations databases[3]. Certainly, the description
of the structure of mental associations stored in human
memories as concept or semantic graphs has a long tradition
[4]. However, a theoretic frame that could explain how neu-
ral systems are able to hold graph structures as conceptual
networks is lacking. The comprehension of the relations be-
tween neurobiology and cognition is the main goal of neural
network theories. But the use of graphs in neural network
theory has been classically confined to the study of connec-
tivity among neurons or groups of neurons[5]. Here, we
want to show that a particular kind of neural network model,
distributed associative memories(also known as correlation
matrix models), have a structural bond with the adjacency
matrix of the graph of associations that could be relevant. In
fact, the connection that we describe here allows a technical
approximation to an ancient epistemological problem: How
can individual brains, which map the external reality with
different particular vector representations, communicate and
share a common knowledge of the world? Moreover, we
show that the mapping between matrix models of distributed
memory and associative graphs is extensible to context-
dependent associative memories that make use of tensor

products to allow different associations to the same cue con-
cept, solving by this way the problem of branching in seman-
tic nets.

I. DISTRIBUTED ASSOCIATIVE MEMORY MODELS

In the field of cognitive neuroscience, the techniques of
functional brain imaging[6] have contributed with important
advances to the efforts to map cognitive processes on the
human brain. The data of neuroimaging have shown that
every cognitive activity is supported by patterns of activity
of extended and distributed groups of neurons. This finding,
in addition to the knowledge that the memory traces are
stored superimposed and that memories are tolerant to dif-
fuse damage[7], naturally point to the kind of models of
cognitive activities named “distributed associative memo-
ries.” These models fit perfectly well with this vision emerg-
ing from the current functional neuroimaging.

The models of distributed associative memories, also
known as “correlation matrix memories”[8], account in a
natural way for some of the distinctive features of human
memory (for a systematic approach to this theory we refer
the reader to the classical book of Kohonen[9]; a recent
physicist’s view on these models can be seen in[10]).

In distributed associative memory models, the units car-
rying cognitive meaning are large patterns of neural activi-
ties, represented by vectors. The memory traces are stored,
distributed and superimposed. The basic operation of these
models is the association, that is, the capacity of neuronal
groups to respond to a certain configuration of neural activity
with an associated pattern of neuronal activation. We might
then havek such associations summarized by the mapping
hf1→g1,f2→g2, . . . ,fk→gkj, wheref andg are real column
vectors representing the patterns of neuronal activities acting*Corresponding author. Email address: pomi@fcien.edu.uy

PHYSICAL REVIEW E 70, 066136(2004)

1539-3755/2004/70(6)/066136(6)/$22.50 ©2004 The American Physical Society066136-1



as stimulus and associated responses, respectively. In these
models the patterns are distinguished by their angles(two
colinear vectors represent the same pattern). So, if a set of
stimulus vectorshf ij are to be mutually distinguishable they
must be linearly independent.

Including the set ofk different, linearly independent,
stimulus vectorshf ij in the k columns of the matrixF
=ff1,f2, . . . ,fkg, and the correspondingk associated response
vectors in the columns of the matrixG=fg1,g2, . . . ,gkg, then,
an associative memory able to storek arbitrary associations
without distortion is given by the general expression[9]

M = GsFTFd−1FT, s1d

wheresFTFd−1FT is the Moore-Penrose pseudoinverse, usu-
ally written asF+. Without loss of generality we can so far
assume that the mapped input signalsf1. . .fk are orthonormal
to one another[11]. In this case the expression of the matrix
memory reduces to the simple form

M = GFT, s2d

or, equivalently, ogif i
T. Such memory, associative and

content-addressable, stores the associations distributed and
superimposed in the coefficients of the matrixM . These co-
efficients can be related, in the first instance, to synaptic
conductance modifications of the neurons represented by the
rows of the matrix.

II. MEMORY MODEL FOR THE ASSOCIATIONS
BETWEEN CONCEPTS

Now consider the utilization of an associative memory to
model the store of associations between concepts from the
real world, such as those represented in semantic nets as free
associations databases[3]. The nervous system stores the
concepts in a distributed form, as a certain pattern of neu-
ronal activation[12].

We representh distinct concepts by vectors chosen within
an arbitrary orthonormal basishwj that spansRn, nùh. The
dimensionn corresponds to that of the biological domain and
takes into account all the possible activations for any given
concept. Our memory stores the associations elicited by each
concept acting as a stimulus and giving as a result another
concept. So, both stimulus vectors and associated
responses—generically,hf ij and hgij—map concepts, and
they belong to the samen-dimensional vector space.

A memory M w that associates to each cue conceptwi
another arbitrary conceptw j, is written as a sum ofh outer-
productswi8wi

T

M w = o
i=1

h

wi8wi
T, s3d

where wi8=w j for 1ø j øh, or in the compact formM w
=GwFw

T, where Fw is a rectangular matrixsn3hd and its
columns are theh mutually orthogonal conceptssFw

=fw1,w2, . . . ,whgd. The set ofh associated concepts corre-
sponding to each of the stimulus concepts are chosen within
the same sethwj and are packed in the matrixGwsn3hd.

Notice that Gw admits repetition within its columns inas-
much a same concept can be retrieved as a result of different
stimulus concepts.

III. GRAPH OF ASSOCIATIONS

GraphsGsV,Ed are mathematical objects defined by an
ordered pair of setssV,Ed. The setV is the set ofverticesand
E, a subset of the set of unordered pairs ofV, is the set of
edges[13]. If the pairs of vertices are ordered, the edges of
the graph are named arcs, represented by arrows, and the
graph is named as a directed graph or a digraph. Every graph
can be univocally determined by its adjacency matrixAsGd
=fai,jg. The adjacency matrix of a graph is a square matrix
(the same dimension of the vertex spaceV), whose entries
take values 1 or 0, depending on the existence of an arc
linking the pair of verticesi j .

Given a finite number of concepts, an associative memory
is characterized by its capacity of responding to each concept
with the evocation of another concept. An association is,
therefore, an ordered relation between pairs of concepts.
Then, the set of associations configures a digraphGsV,Ed in
a vertex spaceV of possible concepts, being their arcsE the
set of associations between concepts instructed in the
memory. We name this digraph as “graph of associations.”

In this graph of associations only one arrow outgoes from
each vertex, so each vertex of the digraph hasoutdegree1,
which is the definition of afunctional digraph[14]. As the
vertices are in correspondence with concepts represented by
real vectors of lengthl, such that any two vectors are or-
thogonal, the vertex spaceV is an orthonormal basis of a
vector space of dimension equal to the number of vertices
uVu. Let us call this acompleteorthonormal representation
[15] of the graph of associations.

Hence, distributed memories admit two complementary
representations:(a) its matrix resulting from the sum of out-
erproducts of Eq.(3), strongly dependent on the particular
code of concepts, and(b) its graph of associations. Figure 1
shows the distributed memory, the corresponding graph of
associations and the adjacency matrix for an example of as-
sociations between only four different concepts.

IV. ADJACENCY MATRIX AS A MEMORY

Now we return to the matrix memory.M wsn3nd is di-
mensional redundant inasmuch as the different concepts
were codified withn-dimensional vectors imposed by the
biological information processing. Thus, for the analysis of
the memory we only need to consider the abstract concept
vector space. In this case it is always possible to do an or-
thogonal change of basis by mapping the biological
n-dimensional representation into an abstract representation
in the h-dimensional space of concepts.

We transform the vectors of the basishwj to the standard
basis of the concept space constituted by the column unit
vectors of the h-dimensional identity matrix: e1
=s1,0, . . . ,0dT, e2=s0,1, . . . ,0dT, . . ., eh=s0,0, . . . ,1dT. Re-
writing the matrix memory in the standard basis gives the
following sum of outerproducts:
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M e = o
i=1

h

ei8ei
T, s4d

where ei8=ej for 1ø j øh. For the particular four-concept
example of Fig. 1, we have

M e = e3e1
T + e1e2

T + e4e3
T + e1e4

T, s5d

which is another vector codification of the same set of asso-
ciations represented by the graph of the figure.

Finally, observe that each term of the sum, i.e., each as-
sociation, is a unit square matrix with 1 in the entryji and 0
in the rest of the elements. Hence, each term of the sum
provides an element of the transpose of the adjacency matrix
of the graph of association

M e = AsGdT. s6d

This means that the adjacency matrix of the graph of asso-
ciations is just the memory coded in the standard basishej of
theh-dimensional space of concepts. Note that the transpose
is the result of adopting in these models the usual convention
of coding the neural activities with column vectors. Coding
the concepts with row vectors instead of columns, the adja-
cency matrix of the graph of associations directly gives the
very memory coded in the standard basis.

Remark that:(i) if a complete orthonormal representation
of a graph is adopted, the adjacency matrix of the graph can
be viewed as a sum of outerproducts of the unit vectors la-
beling the verticesAsGd=oi=1

h eiei8
T, with ei8=ej, 1ø j øh;

and(ii ) if the graph is a functional digraph, thenAsGd can be
viewed as a matrix memory.

V. SPECTRUM OF THE MEMORY

When characterizing the dynamic properties of a neural
system with recursion, the final behavior will depend on the
spectrum of the matrix memory. Therefore, its determination
becomes a desired goal in a real biological associative
memory. This goal is, nevertheless, hard to attain, because
we do not know the details of the neural codes. However, as
long as the distributed associative memory model remains
valid, the representation of a neural memory by the graph
with the structure of stored associations provides with a
simple method to obtain that spectrum.

Let us now consider the relation between the spectrum of
the n-dimensional matrix model of the biological memory
M w and the spectrum of theh-dimensional memory of the
abstract concept spaceM e. SinceM e=AsGdT and it is well
known that a matrix and its transpose have the same eigen-
values[16], what we wish to relate is the spectrum of the
matrix model of the biological associative memory with that
of the adjacency matrix of the graph of associations. To re-
solve the point, observe that the change of basis from the
neural n-dimensional concept vectorshwj to the abstract
h-dimensional standard basishej can be viewed as occurring
in two steps:hwjn→ hejn→ hejh.

This diagram represents these two steps: an orthogonal
change of basis fromhwj to hej, both n-dimensional, and a
dimensional reduction from the biological to the conceptual
space. In the first step we haveM w and a memory coded in
the basishej, but now also withn-dimensional unit vectors
M esnd. So, sinceM w=oi=1

h wi8wi
T andwi =Fwei, (whereFw, the

square matrix containing then column vectors of thehwj
orthogonal basis, is here acting as the matrix of change of
basis), then the memory can be written as

M w = o
i=1

h

Fwei8sFweidT = o
i=1

h

Fwei8ei
TFw

T = FwM esndFw
T . s7d

SinceFw is orthogonal, matricesM w and M esnd are similar
and share the spectrum of eigenvalues. Therefore,

hlsM wdj = hlfM esndgj. s8d

In the second step we will evaluate the relation between the
spectrum of the matrix memoriesM esnd and M eshd. First re-
member thatM eshd=AsGdT and also that the adjacency matrix
of a graph and its transpose have the same eigenvalues.
Therefore,hlfM eshdgj=hlfAsGdgj. Adopting the complete or-
thonormal representation of the graph, bothAsGdT andM esnd
are orthonormal labelings of the vertices of the same graph
the only difference being the dimension of the unit vectors of
the standard basis employed.

Labeling the h vertices with h columns of an
n-dimensional identity matrix generatessn-hd unconnected
vertices in the graph, that are in correspondence tosn-hd zero
rows and columns in the adjacency matrix. Choosing the first
h columns of this identity matrix as labels, the adjacency
matrix of the graph[here equalsM esnd] attains the form

FIG. 1. A memory storing the associationsh1→3,2→1,3
→4,4→1j between four concepts coded by vectors of an orthonor-
mal basis hwj. The matrix memory M w=GFT=fw3w1w4w1g
3fw1w2w3w4gT is generated by the sum of outerproductsM w

=w3w1
T+w1w2

T+w4w3
T+w1w4

T. Representingw1. . .w4 by the
corresponding columns of a normalized 434 Hadamard matrix, the
matrix memory looks as in the figure. This memory can also be
represented by its graph of associations. The four concepts are rep-
resented by the set of vertices V=hn1,n2,n3,n4j and the associa-
tions by the arcs E=hn1n3,n2n1,n3n4,n4n1j. AsGd is the adjacency
matrix of this graph.
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M esnd = FAsGd 0

0 0
G , s9d

where the zeroes represent null matrices. It is evident that
M esnd will have sn-hd additional zero eigenvalues. Any other
labeling of the vertices(obtained by choosingh different
n-dimensional unit vectors of the standard basis) results in
the permutation of rows and columns of the matrixM esnd, an
operation that preserves the spectrum and gives rise to iso-
morphic graphs[17].

Consequently, the eigenvalues of any given matrix
memory will be the same as those of the adjacency matrix of
its graph of associations plussn-hd zero eigenvalues.

VI. ADAPTIVE ASSOCIATIONS AND THEIR GRAPHS

In this section we present adaptive associative graphs as
an extension of the model that we have already seen. These
graphs correspond to memories that can associate different
responses to the same given concept, depending on the neu-
ral context. In doing so, these graphs and their coresponding
memories provide a solution to the known problem of
branching in semantic nets; this is the practical problem of
what to do if there is more than one link leaving a node.

The directed graphs that arise from experiments of free
associations in humans[3] can present more than one arrow
emerging from each concept. These associative digraphs
with outgoing degrees larger than one are population graphs,
resulting from the study of a sample of people. Each person
responds to the cue concepts with a single association, so the
graph of explored associations of an individual is a func-
tional digraph similar to those we have just seen emerging
from the classical associative memory models[18].

However, it is well known that a same human mind can
retrieve diverse associations, depending on the context ac-
companying each cue. A human memory in a real nervous
system can probably be regarded as a superposition of these
kinds of memories and their associative graphs. Context-
dependent associative models were proposed in 1989 to per-
mit adaptive associations[19], providing a solution to the
problem of branching. In these models making use of the
tensor product, a particular associative memory can be ex-
tracted from a state of superposition in the same neural sub-
strate, by the action of the context[20]. In these memories, a
context is a vectorp representing another pattern of neural
activity that modulates a vector stimulus.

The semantic structure of this kind of memory can be
represented by its corresponding graph of adaptive associa-
tions. This graph is a superposition of the previously de-
scribed associative graphs. The associations corresponding to
a particular context are distinguished in this superposed
graph by different edge coloring(here we use Greek lettersa
andb for the contextual colorings). Let us suppose that the
associations instructed in the example of Fig. 1 correspond to
a certain contexta of neural activity represented by a col-
umn vectorpa. Now consider another neuronal contextb,
represented by the vectorpb, orthogonal topa. The same set
of concept cuesF=fw1w2w3w4g, but now in the presence of
contextpb, elicit the associated conceptsGb=fw2w4w1w3g

instead of the previousGa=fw3w1w4w1g. To each one of
these sets of associations corresponds an associative graph
with one colorGa andGb. The adaptive associative graphG
is their superposition, and it is formally defined as their
union G=GaøGb. A memory instructed as

E = GaFT
^ pa

T + GbFT
^ pb

T, s10d

where ^ is the Kronecker product(also named direct or
tensor product), stores both sets of associations. A given con-
text pa or pb alternatively extracts the memoriesM a or M b

EsI ^ pad = GaFT = M a s11d

where, as we have seen,M a is in correspondence with
AsGad. Hence, looking at the graphs, the operation per-
formed by the context is to dissect the subgraph with its
same coloring.

Figure 2 shows the adaptive associative graph described

FIG. 2. Human memories can retrieve different associations de-
pending on the context. The semantic structure of such a memory
can be represented by a corresponding graph of adaptive associa-
tions. At the upper part, the figure shows a multigraph that is a
superposition(the graph union) of two functional digraphs, the sub-
graphsGa andGb, and its adjacency matrix. The Greek lettersa and
b represent two different edge colorings, corresponding to associa-
tions in the presence of different contexts(see text). The context-
dependent memoryE stores both sets of associations.F, Ga, and
Gb are defined in the text. A given context vectorpa or pb alterna-
tively extracts the memoriesM a=GaFT, or M b=GbFT. Their cor-
responding associative graphsGa andGb are shown with their ad-
jacency matrices.
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in the previous paragraph and its adjacency matrix. This
graph is decomposable in the two associative subgraphsGa

or Gb, depending on which context,pa or pb, is presented to
the context-dependent associative memoryE.

VII. FINAL REMARKS

We have shown here that distributed associative memory
models, also known as correlation matrix memories, admit a
natural representation as graphs of association. We defined
this associative graph and showed that the adjacency matrix
of this graph is just the memory coded in the standard basis
of the abstract conceptual space. Therefore, if the neural
memory organization can be at some scale represented with
this kind of model, our results fulfill the gap between two
levels of networks: the neuronal wiring and the semantic
nets. In addition, we want to point out that this result of
semantic nets emerging from matrix associative memories
unifies two representations considered until now as alterna-
tives [21]: one of graphs of knowledge and another of con-
cepts as multidimensional vector spaces.

The second finding we want to note is that we have ob-
tained a code invariant. This result may be important, not
only because it provides us with a possible neural support for
semantic graphs, but also because it could enlighten the very
hard question of the “shared world phenomenon.” In what
sense do we inhabit a common world? How can perceptual
experiences be shared by different individuals provided that,
almost surely, the distributed codes employed by two differ-
ent brains would be different in a detailed level? The code
vectors effectively used in the neural representation of a
same portion of the world by individuals sharing the same
maternal language are the result of modifications of synaptic
weights that have an anecdotal character. Our result implies
that, in associative memory models, both the graph of asso-

ciations and its spectrum remain code invariant. This code
invariance is not only referred to the election of the basis and
its dimension, but also to the election of the labeling of each
concept within the vectors of a given basis. We believe that
this finding of code invariance of the graph and the spectral
characterization of associative memories can provide with a
pathway for the comprehension of the phenomenon of shared
worlds.

Finally, this code invariance suggests the following. A
neural memory is a dynamical system whose final state will
depend on the spectrum of the matrix memory. To know the
eigenvalues would usually imply the precise knowledge of
the neural population coding for each concept, the neuronal
connectivity, etc. All of these are extremely difficult tasks
and practically unattainable at the neurobiological level.
Nevertheless, the code invariance of the representation of the
memory by its associative graph and its spectrum provides us
with a quick method to predict the dynamics of the neural
system, i.e., the sequence of associations, without the neces-
sity of knowing the detailed biological implementation[22].
Actually, the knowledge of the relationships of the informa-
tion stored in the memory enables us to straightforwardly
write the adjacency matrix of the associative graph, find its
spectrum, and predict the dynamics of the neural system.
Hence, in the case that distributed associative memories re-
main acceptable models of human memories, an exciting
(and also disturbing) possibility of a cognitive engineering
emerges. With this cognitive engineering it would suffice to
explorein vivo the semantic structure of a brain in order to,
adding a vertex and some adjacencies or deleting certain key
edges, alter the dynamics of the cognition in a desired way.
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